
INCENTIVISED ORCHESTRATED TRAINING ARCHITECTURE
(IOTA): A TECHNICAL PRIMER FOR RELEASE

Felix Quinque
Macrocosmos AI

felix@macrocosmos.ai

Alan Aboudib
Macrocosmos AI

alan@macrocosmos.ai

Rodrigo Lopez Portillo Alcocer
Macrocosmos AI

rodrigo@macrocosmos.ai

Szymon Fonau
Macrocosmos AI

szymon@macrocosmos.ai

Brian McCrindle
Macrocosmos AI

brian@macrocosmos.ai

Steffen Cruz
Macrocosmos AI

steffen@macrocosmos.ai

May 30, 2025

ABSTRACT

In August 2024, Bittensor’s Subnet 9 (SN9) demonstrated that a distributed network of incentivized,
permissionless actors could each pretrain large language models (LLMs) ranging from 700 million
to 14 billion parameters, while surpassing established baselines [10]. While that work validated
blockchain-based decentralized pretraining as viable, it contained core issues: (i) every miner had to
fit an entire model locally, and (ii) “winner-takes-all” rewards encouraged model hoarding.

Here we introduce IOTA (Incentivized Orchestrated Training Architecture), an architecture that
addresses these limitations by transforming SN9’s previously isolated competitors into a single
cooperating unit that can scale arbitrarily while still rewarding each contributor fairly. IOTA is a
data- and pipeline-parallel training algorithm designed to operate on a network of heterogeneous,
unreliable devices in adversarial and trustless environments. The result is a permissionless system
that (1) is capable of pretraining frontier-scale models without per-node GPU bloat, and (2) tolerates
unreliable devices and (3) aligns participants through transparent token economics.

Below, we present the key pieces of work explored in the process of creating IOTA. We note these
are a series of preliminary results, to be validated in the production release:

• Data- and Pipeline-parallel SWARM architecture – An orchestrator distributes model layers
across heterogeneous miners and streams activations between them, enabling model sizes to
scale with the number of participants rather than being constrained by the VRAM of a single
machine.

• Granular, continuous incentives – Validators continually measure each miner’s contribution;
token emissions are proportional to the work done by each node, rather than the previously
utilized winner-takes-all incentive landscape in SN9.

• Activation compression - We explore compression techniques via model-bottlenecks to cut
communication bandwidths of activations by up to 128×, vastly improving training speed.

• Butterfly All-Reduce – Miners average disjoint parameter slices in O(1) bandwidth, offering
linear scalability, redundancy and built-in collusion detection.

• CLASP (Contribution Loss Assessment via Sampling of Pathways): A fair attribution scheme
assigns credit to miners proportional to their marginal utility and detects exploits, even when
contributions are interdependent across the pipeline.



Incentivised Orchestrated Training Architecture (IOTA): A Technical Primer for Release

1 The Landscape of Distributed Pretraining

The decade of centralized training and algorithm optimization since the AlexNet ([9]) moment in deep learning has
continued to reinforce what is commonly referred to as The Bitter Lesson ([18]):

“General methods that leverage computation are ultimately the most effective.”

Recent years have seen an explosion in the scale of pretrained models. Particularly in NLP, frontier models have been
trained which exceed 1 trillion parameters. At such a scale, a single model can no longer fit into the memory of one
GPU and must be partitioned across many devices. Currently, training such models demands intensive high-bandwidth
communication between devices and assume reliable, low-latency interconnect, making training feasible only in tightly
controlled data-centre environments. The requisite infrastructure is also notoriously expensive, available only to a few
organizations. This centralization of compute not only raises the financial barrier to entry, but also limits who can
experiment and iterate at the cutting edge of model development.

These realities motivate the search for distributed alternatives to centralized pretraining. Researchers have begun
exploring more cost-efficient setups that leverage dispersed resources: for example, renting fleets of cheap pre-emptible
cloud instances or pooling volunteer computing power. Such approaches promise to democratize access by tapping
into a “cluster-of-the-whole-internet” in place of a single mega-cluster. Yet running large-scale training on unreliable,
heterogeneous networks presents new challenges. Traditional data parallelism (DP) and model/pipeline parallelism
(MP/PP)—the backbone of today’s LLM training—each face significant trade-offs in decentralized settings.

Data parallelism replicates the complete parameter set on each worker, partitions the training corpus, and performs
synchronous gradient averaging after every step. This strategy is implementation-friendly and resilient to slow or
failing participants because individual mini-batches can be processed independently. Communication overhead can
be mitigated through high-ratio gradient compression—reductions approaching 800x have been reported without
measurable loss in accuracy ([1][12]). Recent decentralized demonstrations, notably Prime Intellect’s 10 B-parameter
INTELLECT-1([8] and Templar’s trustless 1 B-parameter TEMPLAR-I ([19]), confirm that compressed data parallelism
can converge on heterogeneous, volunteer GPU clusters. The principal drawback remains memory footprint: every
participant must accommodate the full model and its optimiser states. Consequently, large-scale DP presupposes access
to multi-GPU servers (e.g. 8 × H100), limiting its suitability for broad, permissionless participation.

Model parallelism leverages the sequential multi-layer structure of the network so each worker stores only a slice of the
weights, allowing models that exceed single-device memory. Two variants dominate: tensor parallelism, which divides
computation within each layer but incurs costly all-to-all exchanges after every layer, and pipeline parallelism, which
assigns contiguous layer blocks to different devices and streams activations forward (and gradients backward). While
pipeline parallelism reduces per-layer traffic, both schemes presuppose reliable, high-bandwidth links; any straggler can
stall the pipeline, making conventional MP/PP ill-suited to open, heterogeneous networks.

As such, prior distributed training strategies have faced three fundamental limitations outside centralized clusters: (a)
memory constraints if every participant must load the full model (the DP approach); (b) communication bottlenecks and
failure sensitivity when splitting models across participants (the MP/PP approach); and (c) without effective incentives,
malicious participants can disrupt the delicate process of training AI models.

SWARM Parallelism [15] offers a novel alternative by addressing limitations (a) and (b). SWARM is a model-parallel
training algorithm explicitly designed for “swarms” of unreliable, heterogeneous machines. It extends pipeline
parallelism with added resilience and adaptivity: instead of a fixed pipeline that fails if one node drops, SWARM
dynamically creates randomized routes through the network and reconfigures them on the fly in response to faults or
stragglers. At a high level, the system prioritizes faster and more stable peers for critical pipeline stages and periodically
redistributes the work as devices join or leave. This stochastically wired, fault-tolerant approach reduces the impact of
slow or lost participants and represents a viable path for model-parallel pretraining on the kinds of unreliable, globally
distributed systems that were previously written off as too slow or flaky.

Meanwhile, addressing limitation (c) has been the focus of the BITTENSOR network, a framework that introduced a
blockchain-based economic layer for generalized incentivization [2]. Bittensor’s SN9, launched as an experimental
subnet for LLM pretraining, has achieved noteworthy results: decentralized miners collectively developed models up
to 14 billion parameters that outperformed comparable industry baselines (OpenAI GPT-2 Large and Falcon-7B)
on perplexity benchmarks [10]. Bittensor’s innovations in incentive design therefore create a pathway to achieving
permissionless, performant systems that can organize unprecedented amounts of compute.

In summary, various solutions attempt to solve key technical hurdles regarding distributed training but lack an incentive
model, while others provide economic incentives but have yet to achieve the training performance of a coordinated
cluster. IOTA bridges this gap by combining novel techniques that jointly tackle all three limitations.

2



Incentivised Orchestrated Training Architecture (IOTA): A Technical Primer for Release

• Incentivized Pipeline Parallelism: Section 2 introduces IOTA, a training architecture in which a single large
model is partitioned across miners in pipeline-parallel fashion. Each miner processes a slice of the model (a
set of consecutive layers), while training data samples stream through the pipeline in a data-parallel manner.
Crucially, the blockchain-based reward mechanism is redesigned so that all participants in the pipeline are
rewarded in proportion to their contribution. By “spreading” the model across loosely connected participants,
IOTA enables continuous training beyond the memory limits of any one machine and welcomes hardware
ranging from consumer-grade GPUs to cutting-edge accelerators.

• Activation Compression: In Section 4, we introduce a novel “bottleneck” transformer block built on Llama3
that preserves residual pathways while compressing activations (and gradients) by up to 128× in bf16,
attempting to matching data-center speeds and maintaining convergence even at extreme compression levels.

• Butterfly All-Reduce for Trustless Merging: Section 5 introduces Butterfly All-Reduce, a collective operation
to globally aggregate model updates (such as gradient sums or weight averages) from all participants. IOTA
employs butterfly all-reduce to perform data aggregation in a decentralized and verifiable manner. This serves
as a “merge primitive” for assembling contributions from many miners into one global model without relying
on any central server and is resilient to a fraction of malicious or dropped participants.

• CLASP: To fairly attribute credit in multi-node training, IOTA introduces a Shapley-value-based algorithm
called CLASP: Contribution Loss Assessment via Sampling of Pathways in Section 6. Shapley values,
originating from cooperative game theory, quantify each participant’s marginal contribution to the model’s
improvement. Rather than relying on simplistic metrics (e.g., local accuracy), CLASP evaluates the effect of
removing or substituting individual miners on convergence and model quality. This not only promotes honest
effort and deters free-riding—since rewards are tied to provable impact—but also serves as a mechanism for
detecting adversarial or exploitative behavior. While highly promising, CLASP is not included in the initial
release; it remains an active area of research and is intended for integration into the incentive mechanism once
the system stabilizes post-launch. Further publications will detail the full design and its empirical foundations.

In this report we introduce the technical architecture and innovations behind these four components in greater depth,
together with proposals for initial implementation and avenues for further research.

2 IOTA Architecture

IOTA is structured around three core roles: the Orchestrator, Miners, and Validators. The simplified design of the
system is illustrated in Figure 1. Rather than adopting a fully peer-to-peer topology, IOTA follows a hub-and-spoke
architecture centered around the Orchestrator. This design choice ensures global visibility and enables comprehensive
monitoring of all interactions between participants, which is critical for enforcing incentives, auditing behavior, and
maintaining system integrity.

Figure 1: Overall system architecture. The orchestrator facilitates the training process by triggering miners to work on
specific layers of the model, further triggering when validation should occur based on the progress of the miners

3



Incentivised Orchestrated Training Architecture (IOTA): A Technical Primer for Release

This architecture allows a system-level orchestrator to manage how participants on the network will operate at different
stages of the training process. All data that is created and handled by these three entities is pushed to a globally accessible
database, making it easy to trace the movement of information. Figure 2 illustrates the temporal relationship between
model training, validator-miner tracking, data sharing, and model sync, which are all triggered by the orchestrator.

Figure 2: Timeline of validator-miner tracking, training, compressed sharing, and syncing blocks. Each stage of the
learning process is triggered by the orchestrator to facilitate training.

1. In the training stage, miners process forwards and backwards activations. First layer miners read from the
dataset, middle layer miners each then apply their layer to the activations until the last layer miners compute
the loss. Finally, the whole process is reversed to compute the gradients for the entire LLM.

2. During compressed sharing, miners upload a highly compressed version of their weights and optimizer state
to be shared within their layer. Since the validator has processed identical activations, both the validator and
miner should have identical local states. There may be small deviations (e.g. if either miner or validator
skipped an activation), but they show very high similarity.

3. After n training and compressed sharing stages, a full synchronization is required. During this stage, miners
share their full uncompressed weights and optimizer states within their layer. This stage allows new miners to
join in by copying the existing miners’ states, as well as validators to replicate a miners’ state for validation.

4. In the validation stage, a validator chooses a miner at random and reproduces its actions. It will then confirm
that its own results are aligned with the miners results, and assign a score as described in Section 3.

The stage between two full synchronization steps (and therefore also the length of a validation stage) will be referred to
as an "epoch".

2.1 Orchestrator

The orchestrator’s primary responsibility is to monitor the training progress of each miner over all discrete layers and
initiate weight-merging events accordingly. Given the heterogeneous nature of miner hardware and their unreliability, it
is impractical to wait for all miners to complete an equal number of batches B. Instead, we define a minimum batch
threshold, Bmin, that a miner must complete for its contribution to be considered in the merging process. Once at least
a specified fraction of miners have trained for at least Bmin batches, the orchestrator prompts all qualifying miners to
upload their weights.

This strategy ensures robustness to stragglers and allows us to define the effective batch size Beff:

Be� =

MX
m=1

�
Bm if Bm ≥ Bmin

0 if Bm < Bmin
;

where M is the total number of miners and Bm is the number of batches completed by miner m.

This mechanism draws inspiration from centralized training practices—where Be� mimics the behavior of global batch
sizes in typical LLM training—but in the decentralized setting it is coupled with DiLoCo [5], which enables miners
to perform local optimization steps independently before synchronization. DiLoCo is particularly well suited for this
paradigm, as it:

• Embraces partial participation from miners,
• Supports asynchronous and layer-wise updates, and
• Reduces communication overhead by focusing on the most informative coordinate updates locally.

4




	The Landscape of Distributed Pretraining
	IOTA Architecture
	Orchestrator
	Miners
	Validators

	Incentivization
	Activation Compression
	Butterfly All-Reduce
	Weight Upload
	Weight Reduce
	Data Transfer Analysis

	CLASP: Contribution Loss Assessment via Sampling of Pathways
	Summary
	Appendix A: Numerical Simulation of Incentive Stability
	Throughput Efficiency and vTrust

	Mathematical Formalism of CLASP

